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Estimating the Probability of a Diffusing Target Encountering a
Stationary Sensor

by
James N. Eagle
Department of Operations Research
Naval Postgraduate School
Monterey, CR 93943

In this report two expressions are given for the probability of a
diffusing target avoiding detection to time t by a sensor fixed at the
center of a square region R. The target is constrained to always remain
within R. The first expression results from an approximation to the
exact solution of the diffusion equation, and the second from
experimentation with a Monte Carlo simulation of the diffusion process.

The sensor considered is a definite range Law or “cookie cutter*
detector. For such a sensor, there is a specified range, R, beyond which

detection is impossible and inside which detection is certain.

1. Background

This work was begun with the intention of developing for the Naval
War College, Newport, RI a simple expression for the probability of a
diffusing target avoiding detection by a sensor conducting a moving,
systematic search of the area R. It was soon realized that the special
case of a stationary sensor had to be first addressed, and that this
simpler problem was indeed nontrivial.

The importance of the stationary sensor problem goes beyond being a

limiting case of the moving sensor problem. It may be used to provide

estimates of the rate at which randomly moving targets will encounter
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stationary ob jects with extended fields of influence, such as fixed
acoustic sensors, sonobuoys, or possibly mines.

This stationary sensor problem might appear deceptively simple at
first glance. Rfter all, it could be argued, this problem is equivalent to
that of a searcher with a cookie cutter sensor of range R conducting a
random search for a stationary target. And Koopman[1946] and [1980]
argued that the probability of nondetection to time t is exp(-2Rvt/R),
where v is the speed of the random search. The problem is, of course,
what to use for v when the searcher's path is a diffusion. One of the
results of this work is an expression for the equivalent speed of such a
"diffusion search” of a square area.

The initial, experimental results for the problem here addressed were
obtained by Sislioglul 1984]. Sislioglu conducted Monte Carlo simulations
with different target diffusion constants D, area sizes R, and sensor
detection ranges R. He observed that when the initial distribution of the
target was uniform over A, the probability of nondetection to time t,
PND(t), was given approximately by

(1 - ¥R?/R) exp(-24.7 ROt/A"). (1
In this report, some analytical support for Sistiogiu's results is offered.
Also a slight modification of (1) is suggested which agrees more closely
with theory and expermental results when the area of the detection
disk approaches the area of the search region R.

2. The Diffusion Equation

The probability density plt) of a particle undergoing diffusion in any
coordinate system must satisfy the diffusion equation
(0/2) V?p = dp/at, (2)
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where D is the diffusion constant, and 72 is the Laplacian operator. 1In
Cartesian and polar coordinates, respectively, (2) becomes
(0/2) (8%p/ax? + 8%p/ay? = ap/at, and (3)
(0/2) (9%p/ar2 + (1/r3(0%p/263) + (1/r)(dp/ar)) = 3p/at. (4)
To find & unique function p(x,y,t) or plr,8,t] satisfying these partial
differential equations, spatial and temporal boundary conditions must be
specified. Defining A to be a square with sides of Length L in the first

quadrant, the boundary conditions in Cartesian coordinates are

3p/dx|x=0 = Bp/dx|y=L = O, (5)
dp/ayy=o = 8pfag'|g=|_ =0, (6)
plx,u.t) = 0, (% -L/2)%{y - L/2)2)2 ¢ B, and (?)
pix,y,00 = 1/R, ([x-L/2)%(y-L/2)%)V2> R, (8)

Equations (5] and (6] ensure that none of the target's probability mass
"escapes” from A. That is, the boundaries of B are reflecting. Equation
(7] requires that plx,u,t] be 0 on the detection disk. And (8) ensures that
the initial distribution of the target over the search region is uniform and
integrates to (R-R?)/A (the probability that the target is not detected
at time 0).

For any particular instance of the problem, finding a plx,y,t}
satisfying (3] and the boundary conditions is not difficult using numerical
methods. Such procedures are routinely used in heat transfer problems
to solve the diffusion equation (called the conduction equation or the
Fourrier equétion in the physics and engineering Literature] to determine
the temperature distribution acrose imperfectly conducting solids. In
faut, Pitts and Sissom{1977] give the example of a heated pipe in a
square block of insulating material as one where the isotherms can be

accurately estimated by hand plotting.




Although the problem is not hard to solve numerically, the square

boundary of A combined with a circular sensor tend to make the
analytical solution difficult to obtain. And without an analytical
solution, it may be impossible to establish Sislioglu's observations in
general. Making a change to the geometry, however, allows an
analytical solution. Specifically, if the search region R is assumed to be
a disk of area R instead of a square, then an exact solution in polar
coordinates is possible.

It is noted that the ray solution method described by Mangel[1961]
could presumably be used to solve the diffusion equation, at least
approximately, for a square search area. Such a solution was not
attempted since an exact solution was available for the circular search

area case.

3. The Solution

The disk-within-a-disk geometry has a radial symmetry, thus reducing
the problem to one dimension, r. The new problem is to find a function
plr,t) satisfying

(D/2) (3%p/ar? + (1/r)(dp/ar)) = dp/at,
subject to

dp/ar|,=p, = 0,

plr,t) = 0, r<R,

plr,0) = /R, >R,

where Rq = [A/m)"2is the radius of the transformed (i.e., circular] search

area A. This problem has been salved in the physics literature.
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Muskat[1937] and Muskat{1934] (a paper investigating the production
rate of oil wells) give the solution as

00 .
pir,) = /A 3’ K, Uloegt) expl-D o2 t/2) (9)
n=i :
where
Kq = JolaegR) Jiloe Re) 7 (g2l R - Ji2lex R, (10)
Ulaeyt) = Y{{oegRe) dolaegr) - difer Rl Yoloegt, {11}

and o, is the n' positive root of UlaR). (That is, the n* smallest
positive value of o satisfying Ul«R] = 0.) Also, Jg, Jy, Yq, and Yy are
respectively Bessel functions of the first kind order 0, first kind order 1,
second kind order 0, and second kind order 1.

The solution (91H11) does not appear particularly easy to evaluate or
interpret, being an infinite sum of Bessel functions. However far large t
the solution simplifies considerably. Rs t becomes Large, (9) becomes

[~k /R) Uloeyr) expl-D e t/2), (12)
where a4 is the smallest positive value of « such that Ule:R) = 0. The
other exponential terms are ignored since they involve larger roats of
UleR]. This means that as t becomes Large, the decrease in plr,t) for
constant r becomes exponential at a rate of Da,%/2.

When plr,t) is specified, PND(t]) is then given by

[ [ plrt)rarde. (13)
0 R
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So for large t, PND(t) becomes
Ra
- 2%, /A) { [ Uler ) ¥ O} expl-D ot/ 2) (14)
R
- (2%, R/ (Roey N{dfaey Re) Yiioe R) - Yoy Rl Jory R} expl-D a2t/2),  (15)
K exp (-D a/?t/2),

where K is a constant which depends on the problem geometry.

Evaluation of the integral in (14) is straightforward given the change of
variable u=«ar and the identities
[ dolw) dxt = % Uy} and [ Yelx) dx = % ¥y(xl.

Thus for Large t, PND{t] decreases exponentially at the same rate as
plr,t). So Sisliogiu's observation of exponentially decreasing PNP[t] (or,
equivalently, a constant detection rate) appears asymptotically correct
for large enough t.

Using Muskat's dimensianless notation, we can simplify the solution
somewhat by defining

Xy= ayR and p = Rg/R.

Then for Large t, PND(t) can be written as

K exp (-0 %2 t/(2R2), (16]
where x,is the first positive x satisfying
Yi{xp) Jdglx) - Jxp) Yolx] = 0; (1?)
K is given by
~(21ky 2(%1 0P {U{lxty p) V%) - Y{%yp) I} (18]
and Ky is
Jolsg Jilstyp) 7 gy - J2lx, ). (19)
R e T e e T S




In the next section, experimentally determined PNO(t] from a Mante -
Carlo simulation of the diffusion process will be compared with (16}-(19),

Sislioglu's approximation (1), and a slight modification of (1).

4. Simulation Results and Conclusions

Figure 1. is a plot of PND(t]) determined by Monte Carlo simulation of
the diffusion process for a square area R of size 10,000 square nautical
miles (nm2), a diffusion constant D of 100 nm2%/hour, and detection radii F
varying from 28.21 nm (p=2] to 3.76 nm (p=15}. The time increment for
these simulations was 1 minute, which resulted in the % and y
displacements of the target in each increment being selected from
independent normal distributions of mean 0 and variance 100/60.

Figure 1. illustrates the degree to which the decrease in PND(t] is
exponential. Plotted on a log scale, PND(t] appears very nearly linear.
For small t, however, the decrease in PND(t) is faster than exponential.
This is seen more clearly in Figure 2, which is an enlargement of the
upper left-hand corner of Figure 1.
Sislioglu reported that PND(t] can be approximated by

(t - wR2/R) expl- 24.7 ROt/R *9). (20)
The simulation results reported here indicate that a somewhat better
approximatio'n when p approaches 1 is

(1 - WR2/R) expl- 24.7 ROt/(A - TRY"I), (21)
That is, A in (20) is replaced with A - TR2. Figure 3. compares PND(t)
calculated by simulation with the estimates given by (21}, (20, and the

asymptotic estimate (16]-(19). The simulation data in Figure 3. are the

.......................

....................



B

<8

H - ((3)ANd) SWTL *SA UOT3IVDIOPUON Jo A3TirIqQeqoad - @anbtd

)

3

I, .

: ('SyH) IniL

wk. (0] ] a9 10} 074 0o

r T T T T T T o

“. m_..N.II.Q N"Q

T £=0 ) wu 97/ g ‘S0 |

. v'6 ‘T'V1 ‘8°81 ‘9°¢¢ ‘¢'8Z =1

4 ST ‘8 ‘9 ‘v 't 'z ‘¢ =0

J

{ L.E\NE: 00T = Q |

" w ‘. =

: z u 000’01 L4

> VHQ T

-.. L

.,

! -

g -
1o

= ] -

o @"Q

F.. wan

. -—4

G1=d —

-]

Lie B e - L un s Y0 4 “mn ViRl W i it Sy U P SN e

h A" ars 4 A g

NOILO3ILZANON 40 ALNIgvEQOyd




b Skt i i e s B e A e " e S A S S B

Ul 0 e

b i A .

o)

s e "l M

A B v - e T Gaati AR iy i et e - 0 g - aiy ) diy =1 Sl ey 4

ek

v
D

.

v, (70"’
E LA T

Al

LR
»
e

R SR ] .
[ T T T «
I, 5 2 fr oy g N

((3)and) Swry °sA uor3delspuon 3o A3r{rqeqoxd 'z 2anbig

(‘syH) 3NL
0oL 8 9 4 A

wu 9.°¢ ‘s0°L

‘b*6 ‘1°vT ‘8°8T ‘9°2Z ‘T8¢
ST ‘8 ‘9 ‘v ‘t ‘sz ‘¢
un\mec voT

ZW4 000’ 0T

[l
< QO ax

.o P - i ¢ vt e, ., mEmmms v v a s e P P Lt e @
PRSP . AR . . 1 St o o e

0

NOILO3L3ANON 40 ALNIBYEO¥d

T R |

CRE I AT A )




- v e = it A AN e ar e T Y i Pt ol i MM M ST, RGN . ¢ 8 8

. suotjeurxoxddy (3)ANd Texdads jo uostaedwoy -¢ aanbrd

(uH) amu

TR AV
10

w. . “ .o v
; S -]
% 3 3
r.
: o
»
(61)~(91)"03 OGNV VIV ¥V INOYD /M VIva ‘NS (Q) (61)~(91)03 ONv viva NouvInns (9)
(un) v (uH) Imu
oS or o oz [L]] 0
o °
3 3
8 [od o
W . |
»
W (0Z)'03 GNv viva Nouvinmis (a) (12)'03 ONY viva NouvINMS (v)
;
'
mf. LS R e Y




---------- B Sk e ok gl Bie B4t B-m ae A e Sen N e A% mus-die Ren Rl enw anlan it aad and aalt w i A A G o SF S A Sl BN et avel aulhafed el i Sand S b oAy deare dy BER e S |

same as in Figures 1. and 2. .except that only results for p of 2, 3, and 6
are shown. In Figure 3. the simulated PND(t) is shown as a solid Line,
while the estimated PND(t) is shown as dashed.

Figure 3.(C) indicates that, especially for small p, PND(t) determined
by simulation does not decrease as rapidly as predicted by (16)-{19). The
explanation is believed to be that for p sufficiently close to 1, a circular
search region does not provide a reasonable approximation of a square
region of the same area. To test this explanation, the three simulations
plotted in Figure 3. were repeated with circular search areas. The
results, shown in Figure 3.(0)., indicate a closer agreement between the
theoretical and observed data. But still the fit is not exact. This is
somewhat disturbing, but might be explained by the discrete manner in
which the diffusion path is simulated. The simulated diffusion path is
approximated by a series of points. Detection must occur exactly at the
points and can not occur between them. The distance between adjacent
points is the random variable (AX2+AY3Y2, where AX and AY are the
independent, normally distributed % and y displacements. It is possible
for the simulated path to jump across the edge of the detection disk
without achieving detection, even though the Line segment connecting

the points Lies partly on the disk. This will tend to reduce the simulated

detection rate below that of the diffusion being approximated.

Figure 4. shows a plot of x,vs. p for values of p from 2 to 15. By
using (16, these values of x, determine the theoretical asymptotic
detection rate as

D %%/(2R2). (22]
Table 1. lists the asympoiic detection rates determined by (22), (21), (20),
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and an overall (i.e., from tirme Q] best fit rate calculated by Least-
squares fitting of the simulation data.

p x{p) Dx2/(2R3) 24.7 RD/(AR-WRA'S 247 RD/A'S  Simulation

(Eq. 22] (Eq. 21) (Eq. 20} Best Fit
2 1.361 .16 107 .0697? 102
2.5 .866 .0?36 .0724 .0957 .0665
3 .626 .0554 .0554 .0465 .0507
4 .389 .0381 .0384 .0384 .0388
6 .218 .0269 0242 0232 .0250
8 147 .0217? 0178 0174 .0202
10 A1 .0194 0141 .0139 01?204
15 .066t1 .0154 .00935 .00929 0137

Table 1. Detection Rates for Various p.

The simulation data suggest the following two conclusions:

a. Equations (16]-(19) give a reasonable estimate PND(t], but the fit
deteriorates as p decreases to 1.

b. For small p, (21) gives a better fit to the data than does (20).
For Large p, both (20] and (21] underestimate the observed asymptotic
detection rate.

We conclude with a few comments on random search. As mentioned
earlier, Koopman's random search model predicts a detection rate of
2Rv/A for searcher with speed v and detection range R conducting a
random search of an area of size R. It seems reasonable that a
diffusion path should be "random" enough far this model to be

appropriate. In fact, we have seen that the detection rate, while not
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constant, approaches a constant value for Large t. Setting 2Rv/A equal
to the exponential term in (21) and solving for speed v gives

12.35 AD/(A - RS
as an approximate equivalent speed for a searcher conducting a

“diffusion search” of a square area.
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